Abstract

For the analysis of a z -variant optical waveguide with high-index contrast by the beam-propagation method (BPM), the error often grows up during the propagation process. In this paper, the formulation of the BPM is revisited, taking into account the effects of the longitudinal field component. The improvement in accuracy is demonstrated through the analysis of a vertically tapered rib waveguide. The power expression based on the Poynting vector is also employed to improve the power conservation property. As an application, the present technique is applied to the design of a spot-size converter composed of a multicore structure. It is numerically demonstrated that the use of a curvilinearly tapered core leads to a conversion length of 570 mum, which is 42% less than the length of a linearly tapered core, with a coupling efficiency of 97% being maintained at a wavelength of 1.55 mum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.