Abstract

In this paper, we consider an inverse source problem for a time-fractional diffusion equation with variable coefficients in a general bounded domain. That is to determine a space-dependent source term in the time-fractional diffusion equation from a noisy final data. Based on a series expression of the solution, we can transform the original inverse problem into a first kind integral equation. The uniqueness and a conditional stability for the space-dependent source term can be obtained. Further, we propose a modified quasi-boundary value regularization method to deal with the inverse source problem and obtain two kinds of convergence rates by using an a priori and an a posteriori regularization parameter choice rule, respectively. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.