Abstract

ObjectiveHuman precision cut lung slices (PCLS) are widely used as an ex vivo model system for drug discovery and development of new therapies. PCLS reflect the functional heterogeneity of lung tissue and possess relevant lung cell types. We thus determined the use of PCLS in studying non-coding RNAs notably miRNAs, which are important gene regulatory molecules. Since miRNAs play key role as mediators of respiratory diseases, they can serve as valuable prognostic or diagnostic biomarkers, and in therapeutic interventions, of lung diseases. A technical limitation though is the vast amount of agarose in PCLS which impedes (mi)RNA extraction by standard procedures. Here we modified our recently published protocol for RNA isolation from PCLS to enable miRNA readouts.ResultsThe modified method relies on the separation of lysis and precipitation steps, and a clean-up procedure with specific magnetic beads. We obtained successfully quality miRNA amenable for downstream applications such as RTqPCR and whole transcriptome miRNA analysis. Comparison of miRNA profiles in PCLS with published data from human lung, identified all important miRNAs regulated in IPF, COPD, asthma or lung cancer. Therefore, this shows suitability of the method for analyzing miRNA targets and biomarkers in the valuable human PCLS model.

Highlights

  • MicroRNAs are key transcriptional regulators of mRNA in eukaryotic cells

  • Comparison of miRNA profiles in Precision-cut lung slices (PCLS) with published data from human lung, identified all important miRNAs regulated in IPF, chronic obstructive pulmonary disease (COPD), asthma or lung cancer

  • We demonstrate the suitability of human PCLS as a model for lung specific miRNA investigations by comparing miRNA profiles of PCLS samples with published data from human lungs

Read more

Summary

Results

The modified method relies on the separation of lysis and precipitation steps, and a clean-up procedure with specific magnetic beads. We obtained successfully quality miRNA amenable for downstream applications such as RTqPCR and whole transcriptome miRNA analysis. Comparison of miRNA profiles in PCLS with published data from human lung, identified all important miRNAs regulated in IPF, COPD, asthma or lung cancer. This shows suit‐ ability of the method for analyzing miRNA targets and biomarkers in the valuable human PCLS model

Introduction
Main text
Results and discussion
Conclusion
Limitations

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.