Abstract

The increasing penetration of Distributed Generators (D.G.) into the existing power system has brought some real challenges regarding the transient response of electrical systems. The injection of D.G.s and abrupt load changes may cause massive power, current, and voltage overshoots/undershoots, which consequently affects the equilibrium of the existing power system and deteriorate the performance of the connected electrical appliances. A robust and intelligent control strategy is of utmost importance to cope with these issues and enhance the penetration level of D.G.s into the existing power system. This paper presents a Modified Particle Swarm Optimization (MPSO) algorithm-based intelligent controller for attaining a desired power-sharing ratio between the M.G. and the main grid with an optimal transient response in a grid-tied Microgrid (M.G.) system. The proposed MPSO algorithm includes an additional parameter named best neighbor particles (rbest) in the velocity updating equation to convey additional information to every individual particle about all its neighbor particles, consequently leading to the increased exploration capability of the algorithm. The MPSO algorithm optimizes P.I. parameters for transient and steady-state response improvement of the studied M.G. system. The main dynamic response evaluation parameters are the overshoot and settling time for active and reactive power during the D.G. connection and load change. Furthermore, the performance of the proposed controller is compared with the PI-PSO-based MG controller, which validates the effectiveness of the proposed M.G. control scheme in maintaining the required active and reactive power under different operating conditions with minimum possible overshoot and settling time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call