Abstract
The original parametric iteration method (PIM) provides the solution of a nonlinear second order boundary value problem (BVP) as a sequence of iterations. Since the successive iterations of the PIM may be very complex so that the resulting integrals in its iterative relation may not be performed analytically. Also, the implementation of the PIM generally leads to calculation of unneeded terms, which more time is consumed in repeated calculations for series solutions. In order to overcome these difficulties, in this paper, a useful improvement of the PIM is proposed. The implementation of the modified method is demonstrated by solving several nonlinear second order BVPs. The results reveal that the new developed method is a promising analytical tool to solve the nonlinear second order BVPs and more promising because it can further be applied easily to solve nonlinear higher order BVPs with highly accurate. Mathematical subject classification: Primary: 34B15; Secondary: 41A10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.