Abstract

A novel modified pilot scale anaerobic oxidation ditch with additional internal anoxic zones was operated experimentally, aiming to study the improvement of biological nitrogen and phosphorus removal and the effect of enhanced denitrifying phosphorus removal in the process. Under all experimental conditions, the anaerobic-oxidation ditch with additional internal anoxic zones and an internal recycle ratio of 200% had the highest nutrient removal efficiency. The effluent NH+4-N, total nitrogen (TN), PO3−4-P and total phosphorus (TP) contents were 1.2 mgL−1, 13 mgL−1, 0.3 mgL−1 and 0.4 mgL−1, respectively, all met the discharge standards in China. The TN and TP removal efficiencies were remarkably improved from 37% and 50% to 65% and 88% with the presence of additional internal anoxic zones and internal recycle ratio of 200%. The results indicated that additional internal anoxic zones can optimize the utilization of available carbon source from the anaerobic outflow for denitrification. It was also found that phosphorus removal via the denitrification process was stimulated in the additional internal anoxic zones, which was beneficial for biological nitrogen and phosphorus removal when treating wastewater with a limited carbon source. However, an excess internal recycle would cause nitrite to accumulate in the system. This seems to be harmful to biological phosphorus removal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call