Abstract

The conventional two dimensional (2D) inverse synthetic aperture radar (ISAR) imaging fails to provide the targets' three dimensional (3D) information. In this paper, a 3D ISAR imaging method for the space target is proposed based on mutli-orbit observation data and an improved orthogonal matching pursuit (OMP) algorithm. Firstly, the 3D scattered field data is converted into a set of 2D matrix by stacking slices of the 3D data along the elevation direction dimension. Then, an improved OMP algorithm is applied to recover the space target's amplitude information via the 2D matrix data. Finally, scattering centers can be reconstructed with specific three dimensional locations. Numerical simulations are provided to demonstrate the effectiveness and superiority of the proposed 3D imaging method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.