Abstract

This paper presents a modified numerical substructure method for simulating the dynamic response of vehicle–track–bridge (VTB) systems. The method can be used to analyze large-scale VTB systems accurately and efficiently. Based on the principle of virtual work, the equations of motion are derived for two separate subsystems, i.e. a small-scale of finely modeled VTB substructure and a coarsely meshed large main bridge subsystem using different level of refinement. Different from the conventional dynamic substructuring approaches, the bridge spans close to the vehicle are modeled in both the main and substructure models, and the contradiction of repeatedly modeling is solved using a “nonlinear force corrector”. A special wheel–rail interaction (WRI) element is used to simulate the fast-moving interaction force between the vehicle and rail. In this way, the two models remain unchanged while the vehicle moves forward, and the computational accuracy is the same as the large-scale purely refined model, while the efficiency is significantly improved, particularly, for the large-scale long VTB systems. Two examples of realistic VTB systems with either smooth or un-smooth rails are used to verify the proposed method. The results demonstrate that the presented method has remarkable advantages of computational efficiency and accuracy, providing a practically useful tool for analysis of large-scale VTB systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call