Abstract

AbstractAero‐engine turbine blades are subject to combined high and low cycle fatigue (CCF) loadings during operations. In this paper, a modified nonlinear cumulative damage model is developed based on linear damage accumulation theory and static toughness exhaustion to predict the CCF life of turbine blades and common blade materials. An interaction factor is created to reflect the integrated effect of high cycle fatigue and low cycle fatigue (HCF‐LCF). Available test data from TC4 alloy and other two alloy materials, together with two turbine blades are utilized to validate the robustness and accuracy of the proposed approach. Comparative results demonstrate that the proposed model holds better performance in life predictions under CCF loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.