Abstract

In this paper, an efficient, novel neuro-evolutionary algorithm to navigate a mobile robot in partially visible envi- ronments is introduced. The main disadvantage of Neuro-Evolutionary algorithm is the slow perception and low efficiency in complex environments which is required to be developed. This research is aimed to speed up the iteration and improve the per- formance in complicated ambient. In the typical neuro-evolutionary algorithm, random values are employed either in weights initialization of neural networks or during the training phase. To do so, this research employed a novel method in which robot navigation will be done by using selected values by 3 neural networks rather than one which improve the performance of learning procedure. Another novel method used in this article is replacing the neural networks which are responsible for obstacle avoid- ance by fuzzy algorithm. It will be shown that fuzzy logic is an easy way to put some initial knowledge in the neuro-evolution algorithm to avoid learning from zero. The results clearly demonstrate that the training algorithm approaches the optimum values with the least iterations which not only reduce the required time for reaching the target but also materialize the obstacle avoidance aim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.