Abstract
In recent years a number of works have been done to extend Particle Swarm Optimization (PSO) to solve multi-objective optimization problems, but a few of them can be used to tackle binary-coded problems. In this paper, a novel modified multi-objective binary PSO (MMBPSO) algorithm is proposed for the better multi-objective optimization performance. A modified updating strategy is developed which is simpler and easier to implement compared with standard discrete binary PSO. The mutation operator and dissipation operator are introduced to improve the search ability and keep the diversity of algorithm. The experimental results on a set of multi-objective benchmark functions demonstrate that the proposed MBBPSO is a competitive multi-objective optimizer and outperforms the standard binary PSO algorithm in terms of convergence and diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.