Abstract

Abstract In this paper the classical molecular structural mechanics model of graphene is modified to improve its accuracy for the analysis of transverse deformations. To this aim, a sample graphene sheet under a uniform pressure is modeled by both molecular dynamics and molecular structural mechanics methods. The sectional properties of the beam element, by which the covalent bonds are modeled, are modified such that the difference between the results of the molecular mechanics model and molecular dynamics simulation is minimized. Using this modified model, the buckling behavior of graphene under a uniform edge pressure is investigated subjected to different boundary conditions for both zigzag and armchair chiralities. The results show that the obtained buckling loads are considerably less than those reported using the classical molecular structural models in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.