Abstract

Friction stir welding (FSW) is a solid state bonding process in which the parts are joined together at the temperature below the melting point. In present study, a modified model was developed based on the partial sticking/sliding assumption in the tool-workpiece interface and the dependence of the thermal energy equations on the temperature-dependent yield stress to determine heat generation in FSW process that is independent from coefficient of friction. So to eliminate the dependence of the final equations on the coefficient of friction, an equation was used which the coefficient of friction was expressed as a function of workpiece yield stress. To validate the model, the FSW process was simulated by the finite element package ABAQUS and two subroutines of DFLUX and USDFLD and then the simulation results were compared with the experimental ones. The results showed that the modified model is appropriately capable of predicting the temperature and the residual stresses in the different zones of welded section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.