Abstract

Riemannian distance based matrix constant false alarm rate (CFAR) detector under small number of pulses provides a novel mechanism for detecting radar targets against the background of sea clutter. However, the computational com­plexity of this detector is heavy. In this paper, using the maximum eigenvalue, we propose two blind algorithms for rank one signal. The proposed methods achieve high detection rates with low computational complexity in which the maximum eigenvalue is employed as the test statistic to modify the Riemannian method. Furthermore, the CFAR property is derived by the group invariant theory. The computational complexity is also analyzed and simulation results verify the effectiveness of the proposed detection methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.