Abstract

A modification of the mathematical model of the shape and fiber direction field of the left cardiac ventricle is presented. The model was developed based on the idea of nested spiral surfaces. The ventricle is composed of surfaces that model myocardial layers. Each layer is filled with curves corresponding to myocardial fibers. The tangents to these curves form the myofiber direction field. A modified spherical coordinate system is linked with the model left ventricle, where the ventricular boundaries are coordinate surfaces. The model is based on echocardiographic, computed-tomography, or magnetic-resonance-imaging data. For this purpose, four-chamber and two-chamber echocardiography views or sections along the long axis of the left ventricle from these tomographic data in several positions are approximated with a model profile. To construct a 3D model, we then interpolate model parameters by periodic cubic splines and the vector field of the tangents to the model fibers is calculated. For verification of the model, we used diffusion-tensor magneticresonance-imaging data of the human heart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call