Abstract

A modified Lattice–Boltzmann method is proposed by considering the Klinkenberg effect and adsorbability-desorbability for the purpose of simulating methane gas seepage in fissured coal. The results show that the Klinkenberg effect has a little influence on methane gas seepage in fissured coal, so it can be neglected in engineering computations for simplicity. If both the Klinkenberg effect and the adsorbability-desorbability are considered, the Klinkenberg influence on gas pressure decreases as the Darcy coefficient increases. It is found by gas drainage simulations that near a drainage hole, the effect of adsorption and desorption cannot be neglected, and the location of the drainage hole has a great influence on drainage efficient λ when the hole is just located at the mid-zone of the coal seam, λ is 0.691808; when the hole is excursion down to 1.0 m from the mid-zone of coal seam, λ decreases to 0.668631; when the hole is excursion up or down to 2.0 m from the mid-zone of coal seam, λ decreases to 0.632917. The simulations supply an effective approach for optimizing the gas drainage hole location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.