Abstract

AbstractA novel modification is proposed to the Kalman filter for the case of non-Gaussian measurement noise. We model the non-Gaussian data as outliers. Measurement data is robustly discriminated between Gaussian (valid data) and outliers by Robust Sequential Estimator (RSE). The measurement update is carried out for the valid data only. The modified algorithm proceeds as follows. Initially, the robust parameter and scale estimates of the measurement data are obtained for a sample of data using maximum likelihood estimates for a t-distribution error model through Iteratively Reweighted Least Squares (IRLS). The sample is dynamically updated with each new observation. Sequential classification of each new measurement is decided through a weighting scheme determined by RSE. State updates are carried out for the valid data only. Simulations provide satisfactory results and a significant improvement in mean square error with the proposed scheme.KeywordsKalman FilterAverage Mean Square ErrorIteratively Reweighted Little SquareError Covariance EstimateStandard Kalman FilterThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.