Abstract

The paper proposes a single degree of freedom oscillator in order to accurately represent the lateral force acting on a rigid floor due to human walking. As a pedestrian produces itself the energy required to maintain its motion, it can be modelled as a self-sustained oscillator that is able to produce: (i) self-sustained motion; (ii) a lateral periodic force signal; and (iii) a stable limit cycle. The proposed oscillator is a modification of hybrid Van der Pol–Duffing–Rayleigh oscillator, by introducing an additional nonlinear hardening term. Stability analysis of the proposed oscillator has been performed by using the energy balance method and the Lindstedt–Poincare perturbation technique. Model parameters were identified from the experimental force signals of ten pedestrians using the least squares identification technique. The experimental and the model generated lateral forces show a good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.