Abstract

In this paper, based on the numerical efficiency of Hestenes–Stiefel (HS) method, a new modified HS algorithm is proposed for unconstrained optimization. The new direction independent of the line search satisfies in the sufficient descent condition. Motivated by theoretical and numerical features of three-term conjugate gradient (CG) methods proposed by Narushima et al., similar to Dai and Kou approach, the new direction is computed by minimizing the distance between the CG direction and the direction of the three-term CG methods proposed by Narushima et al. Under some mild conditions, we establish global convergence of the new method for general functions when the standard Wolfe line search is used. Numerical experiments on some test problems from the CUTEst collection are given to show the efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.