Abstract

BackgroundPeriodontitis is characterized by microbial infection, inflammation, tissue breakdown, and accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans (GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, suggesting that these GAGs may be exploited as a therapeutic for periodontitis.MethodsWe investigated the effects of a synthetic GAG, GM-0111, on various molecular events associated with periodontitis: growth of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) pathogenic bacteria associated with periodontitis; activation of pro-inflammatory signaling through TLR2 and TLR4 in mouse macrophage RAW 264.7 cells and heterologously expressed HEK 293 cells; osteoclast formation and bone matrix resorption in cultured mouse pre-osteoclasts.Results(1) GM-0111 suppressed the growth of P. gingivalis and A. actinomycetemcomitans even at 1% (w/v) solution. The antibacterial effects of GM-0111 were stronger than hyaluronic acid (HA) or xylitol in P. gingivalis at all concentrations and comparable to xylitol in A. actinomycetemcomitans at ≥2% (w/v) solution. We also observed that GM-0111 suppressed biofilm formation of P. gingivalis and these effects were much stronger than HA. (2) GM-0111 inhibited TLR-mediated pro-inflammatory cellular signaling both in macrophage and HEK 293 cells with higher selectivity for TLR2 than TLR4 (IC50 of 1–10 ng/mL vs. > 100 μg/mL, respectively). (3) GM-0111 blocked RANKL-induced osteoclast formation (as low as 300 ng/mL) and bone matrix resorption. While GM-0111 showed high affinity binding to RANKL, it did not interfere with RANKL/RANK/NF-κB signaling, suggesting that GM-0111 inhibits osteoclast formation by a RANKL-RANK-independent mechanism.ConclusionsWe report that GM-0111 inhibits multiple molecular events involved in periodontitis, spanning from the early pro-inflammatory TLR signaling, to pathways activated at the later stage component of bone loss.

Highlights

  • Periodontitis is a chronic inflammatory disease characterized by recurrent infection and inflammation that often progresses into alveolar bone loss

  • We investigated the effects of a synthetic GAG, GM-0111, on various molecular events associated with periodontitis: growth of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) pathogenic bacteria associated with periodontitis; activation of pro-inflammatory signaling through TLR2 and TLR4 in mouse macrophage RAW 264.7 cells and heterologously expressed HEK 293 cells; osteoclast formation and bone matrix resorption in cultured mouse pre-osteoclasts

  • We report that GM-0111 inhibits multiple molecular events involved in periodontitis, spanning from the early pro-inflammatory Toll-like receptors (TLRs) signaling, to pathways activated at the later stage component of bone loss

Read more

Summary

Introduction

Periodontitis is a chronic inflammatory disease characterized by recurrent infection and inflammation that often progresses into alveolar bone loss. Diseases or drastic alterations of the local microenvironment in the oral cavity can break this homeostasis, leading to dysbiotic microbial ecosystems in the periodontium. This process in turn increases the host immune responses, causes tissue destruction, enhances the proliferation of pathogenic microorganisms, and further exacerbates the host immune responses [4,5]. Periodontitis is characterized by microbial infection, inflammation, tissue breakdown, and accelerated loss of alveolar bone matrix. Treatment targeting these multiple stages of the disease provides ways to treat or prevent periodontitis. Certain glycosaminoglycans (GAGs) block multiple inflammatory mediators as well as suppress bacterial growth, suggesting that these GAGs may be exploited as a therapeutic for periodontitis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call