Abstract

Nuclear data evaluation aims to provide estimates and uncertainties in the form of covariance matrices of cross sections and related quantities. Many practitioners use the Generalized Least Squares (GLS) formulas to combine experimental data and results of model calculations in order to determine reliable estimates and covariance matrices. A prerequisite to apply the GLS formulas is the construction of a prior covariance matrix for the observables from a set of model calculations. Modern nuclear model codes are able to provide predictions for a large number of observables. However, the inclusion of all observables may lead to a prior covariance matrix of intractable size. Therefore, we introduce mathematically equivalent versions of the GLS formulas to avoid the construction of the prior covariance matrix. Experimental data can be incrementally incorporated into the evaluation process, hence there is no upper limit on their amount. We demonstrate the modified GLS method in a tentative evaluation involving about three million observables using the code TALYS. The revised scheme is well suited as building block of a database application providing evaluated nuclear data. Updating with new experimental data is feasible and users can query estimates and correlations of arbitrary subsets of the observables stored in the database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.