Abstract

This paper considers the latent Gaussian graphical model, which extends the Gaussian graphical model to handle discrete data as well as mixed data with both continuous and discrete variables by assuming that discrete variables are generated by discretizing latent Gaussian variables. We propose a modified expectation‐maximization (EM) algorithm to estimate parameters in the latent Gaussian model for binary data. We also extend the proposed modified EM algorithm to the latent Gaussian model for mixed data. The conditional dependence structure can be consequently constructed by exploring the sparsity pattern of the precision matrix of the latent variables. We illustrate the performance of our proposed estimator through comprehensive numerical studies and an application to voting data of the United Nations General Assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.