Abstract

A semi-empirical interatomic potential for the post-transition metal, bismuth, is developed based on the second nearest-neighbor modified embedded-atom method (MEAM). The potential reproduces a range of physical properties, such as the lattice constant, cohesive energy, elastic constants, vacancy formation energy, surface energy, and the melting point of pure bismuth. The calculations are done for the rhombohedral ground state of Bi. The results show good agreement with density functional theory and experimental data. The developed MEAM potential for bismuth is useful for material and mechanical behavior studies of the pure material at different conditions and sets the stage for the development of interatomic potentials for bismuth alloys or other bismuth compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.