Abstract
In this paper, we present a modified density-dependent Drucker-Prager Cap (DPC) model to simulate the compaction behaviour of pharmaceutical powders. In particular, a nonlinear elasticity law is proposed to describe the observed nonlinear unloading behaviour following compaction. To extract the material parameters for the modified DPC model, a novel experimental calibration procedure is used, based on uniaxial single-ended compaction tests using an instrumented cylindrical die. The model is implemented in ABAQUS by writing a user subroutine, and a calibration process on microcrystalline cellulose (MCC) Avicel PH101 powders is detailed. The calibrated parameters are used for the manufacturing process simulation of two kinds of typical pharmaceutical tablets: the flat-face tablet and the concave tablet with single or double radius curvatures. The model developed can describe not only the compression and decompression phases, but also the ejection phase. The model is validated by comparing finite element simulations with experimental loading–unloading curves during the manufacture of 8 and 11 mm round tablets with flat-face (FF), single radius concave (SRC) and double radius concave (DRC) profiles. Moreover, the density and stress distributions during tabletting are used to analyse and explain the failure mechanism of tablets. The results show that the proposed model can quantitatively reproduce the compaction behaviour of pharmaceutical powders and can be used to obtain the stress and density distributions during compression, decompression and ejection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.