Abstract

A modified drag model for the power-law fluid-particle flow considering effects of rheological properties was proposed. At high particle concentrations (εs ≥ 0.2), based on the Ergun equation, the cross-sectional shape and the tortuosity of the pore channel are considered, and the apparent flow behavior index and consistency coefficient of the power-law fluid at the surface of the particles are corrected. At low particle concentrations (εs < 0.2), based on the Wen-Yu drag model, the modified Reynolds number for power-law fluid and the relational expression between drag coefficient for single particle and Reynolds number that considers the effect of the flow behavior index are adopted. Numerical simulations for the power-law fluid-particle flow in the fluidized bed were carried out using the non-Newtonian drag model. The effects of rheological parameters on the drag coefficient were analyzed. The comparisons of simulation and experiment show that the modified drag model predicts reasonable void fraction under different rheological parameters, particle diameters, and liquid velocities in both low particle concentrations and high particle concentrations. The increase in flow behavior index and consistency coefficient increases the drag coefficient between the two phases and decreases the average particle concentration within the bed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.