Abstract

Many watershed models employ the Soil Conservation Service Curve Number (SCS-CN) approach for runoff simulation based on soil and land use information. These models implicitly assume that runoff is generated by the Hortonian process and; therefore, cannot correctly account for the effects of topography, variable source area (VSA) and/or soil moisture distribution in a watershed. This paper presents a new distributed CN-VSA method that is based on the SCS-CN approach to estimate runoff amount and uses the topographic wetness index (TWI) to distribute the runoff-generating areas within the watershed spatially. The size of the saturated-watershed areas and their spatial locations are simulated by assuming an average annual value of potential maximum retention. However, the literature indicates significant seasonal variation in potential maximum retention which can considerably effect water balance and amount of nonpoint source pollution. This paper focuses on developing a modified distributed CN-VSA method that accounts for the seasonal changes in the potential maximum retention. The results indicate that the modified distributed CN-VSA approach is better than distributed CN-VSA to simulate runoff amount and spatial distribution of runoff-generating areas. Overall, the study results are significant for improved understanding of hydrological response of watershed where seasonal factors describe the potential maximum retention, and, thus, saturation excess runoff generation in the watershed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.