Abstract

The development of a general discrete element method for irregularly shaped particles is the core issue of the simulation of the dynamic behavior of granular materials. The general energy-conserving contact theory is used to establish a universal discrete element method suitable for particle contact of arbitrary shape. In this study, three dimentional (3D) modeling and scanning techniques are used to obtain a triangular mesh representation of the true particles containing typical concave particles. The contact volume-based energy-conserving model is used to realize the contact detection between irregularly shaped particles, and the contact force model is refined and modified to describe the contact under real conditions. The inelastic collision processes between the particles and boundaries are simulated to verify the robustness of the modified contact force model and its applicability to the multi-point contact mode. In addition, the packing process and the flow process of a large number of irregular particles are simulated with the modified discrete element method (DEM) to illustrate the applicability of the method of complex problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.