Abstract

Voltage model observer is a simple and economical technique for flux estimation in induction motor sensorless drives. However, it shows poor performance in low-speed regions. Therefore, in most cases, the use of this observer is limited. On the other hand, using a simple but accurate estimator is important when the control method is sophisticated and requires heavy computation. This issue will be important in predictive control more than the other methods because the accuracy of the prediction is dependent on the flux estimation. In this paper, a modified closed-loop technique based on voltage model observer is proposed for flux estimation. The feedback loop is supported by the proposed model reference adaptive system direct flux magnitude estimation technique. The dependence of the feedback loop on the stator resistance is eliminated. Therefore, the drift error will be avoided. This will allow the method to withstand the high stator resistance error even at low speeds. Also, a new Lyapunov-based technique for the stator resistance estimation via reduced-order model is proposed. By using the proposed observer, the predictive direct voltage control technique is used as the control method in order to achieve a control method that requires low computation. The proposed method is validated through the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call