Abstract

A novel recovery-free interface-trap measurement method is presented in detail. This method is the modification of the conventional charge pumping (CP) by extending the pulse low level to the stress-bias and minimizing the pulse high-level duty cycle to suppress the recovery effect. The method is applied to study the negative-bias temperature instability in p-MOSFETs. As compared with the conventional CP, a much larger interface-trap generation under stress is observed by the new method. A power law time dependence ( ~ t n) of interface-trap generation is observed. The index n is less than that derived from conventional CP and increases with temperature, demonstrating a dispersive process involved in the trap generation dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.