Abstract
A modified cellular automaton model (MCA) was developed in order to simulate the evolution of dendritic microstructures in solidification of alloys. Different from the classical cellular automata in which only the temperature field was calculated, this model also included the solute redistribution both in liquid and solid during solidification. The finite volume method, which was coupled with the cellular automaton model, was used to calculate the temperature and solute fields in the domain. The relationship between the growth velocity of a dendrite tip and the local undercooling was calculated according to the KGT (Kurz–Giovanola– Trivedi) model. The effects of constitutional undercooling and curvature undercooling on the equilibrium interface temperature were also considered in the present model. The MCA model was applied to predict thedendritic microstructures, such as the free dendritic growth from an undercooled melt and competitive dendritic growth in practical casting solidification. The simulated results were compared with those obtained experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.