Abstract

Differential evolution (DE) is a simple, yet efficient global optimization algorithm. As the standard DE and most of its variants operate in the continuous space, this paper presents a modified binary differential evolution algorithm (MBDE) to tackle the binary-coded optimization problems. A novel probability estimation operator inspired by the concept of distribution of estimation algorithm is developed, which enables MBDE to manipulate binary-valued solutions directly and provides better tradeoff between exploration and exploitation cooperated with the other operators of DE. The effectiveness and efficiency of MBDE is verified in application to numerical optimization problems. The experimental results demonstrate that MBDE outperforms the discrete binary DE, the discrete binary particle swarm optimization and the binary ant system in terms of both accuracy and convergence speed on the suite of benchmark functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.