Abstract
We propose a new method to enhance performance of speaker verification by investigating a novel modification of adaptive Gaussian Mixture Model (GMM) training. This model is trained using a modified Expectation Maximization (EM) algorithm, combined with a modified Maximum A Posteriori (MAP) estimation based weight factor of observation probabilities, called the observation confidence. The observation confidence is calculated based on the SNR estimation. Based on this modified adaptive GMM training algorithm, we propose to construct GMM supervectors and i-vectors, which are considered as input feature vectors for SVM. Besides, the discriminant features for speaker verification are also exploited by using non-negative matrix factorization (NMF) in the GMM-supervector and i-vector space. Experiment results on utterances from Korean drama (“You came from the stars”) show that our proposed methods significantly outperform the baseline GMM-UBM, GMM-supervector and i-vector based SVM under various noisy conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Korean Institute of Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.