Abstract
A new modified Φ-Sobolev inequality for canonical ${L^{2}}$-Lévy processes, which are hybrid cases of the Brownian motion and pure jump-Lévy processes, is developed. Existing results included only a part of the Brownian motion process and pure jump processes. A generalized version of the Φ-Sobolev inequality for the Poisson and Wiener spaces is derived. Furthermore, the theorem can be applied to obtain concentration inequalities for canonical Lévy processes. In contrast to the measure concentration inequalities for the Brownian motion alone or pure jump Lévy processes alone, the measure concentration inequalities for canonical Lévy processes involve Lambert’s W-function. Examples of inequalities are also presented, such as the supremum of Lévy processes in the case of mixed Brownian motion and Poisson processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.