Abstract

ABSTRACTFossil surfaces of erosion and non‐deposition are common in limestone sequences from the Mesozoic in western Europe and in the Tethys and have been described under the name ‘hardgrounds’. They are of shallow water as well as of oceanic origin. A modern example in the Pacific is described in this paper. The Carnegie Ridge, an east‐west trending shallow ridge between South America and the Galapagos Islands, has a central, deeper saddle where erosion has removed most of the sediment cover down to a hard chalk and chert bed (acoustic basement), and has cut intricate channel patterns on the south flank and two deep canyons on the north. The erosion has produced a karst‐like relief of steep‐walled channels, cliffs, and corroded chalk remnants. The floors of the channels are covered with ferromanganese oxide crusts or crust fragments over which loose sediment is being transported. In the two canyons on the north flank, this sediment consists of foraminiferal sand travelling downslope in the form of barchan dunes. All sediment down to acoustic basement has been stripped from the Carnegie Ridge crest except where it is protected behind basement ridges and pinnacles. Surface features of the eroded chalk are strongly reminiscent of features observed in Mesozoic hardgrounds. Current measurements over several days indicate a net northward movement, slow but possibly adequate to keep the sea floor free of fresh deposits. The rates, however, seem inadequate to explain the formation of the deep channels, and there is no evidence for the southward flow which is implied by the southern channel system. A process of combined carbonate dissolution and removal by the current of fresh sediment and dissolution residues can account for the required erosion in about two million years. Regional unconformities identifiable in seismic reflection profiles and dated in cores are of middle to late Pliocene age, suggesting that the formation of the erosion surface began 2‐3 million years ago. Buried Miocene unconformities of local extent show that the present erosion period had minor precursors possibly related to short‐lived increases in current action and carbonate dissolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.