Abstract

Fe-based LDHs have been proven to be an excellent class of catalysts for the oxygen evolution reaction (OER). To achieve industrial applications of water splitting, it is critical to develop a cost-effective and simple strategy to achieve large-area catalytic electrodes. Herein, we present a moderate in situ method for growing Fe-based layered double hydroxide nanosheets on a Ni foam (LDH@NF) substrate at room temperature. Through systematic experimental design characterization, it is found that this in situ growth process is mainly driven by moderate oxidation of Fe2+ in an O2-dissolved solution, the consequent local alkaline environment, and abundant TM2+ ions (Ni2+, Co2+, Ni2+/Co2+). Compared with other in situ methods, this method is not accompanied by violent redox reactions and is favorable for the uniform growth of LDHs, and the composition of the catalyst can be easily regulated. Specifically, the optimized NiFe-LDH@NF catalyst demonstrates excellent catalytic performance in the alkaline water oxidation reaction with a low overpotential of 206/239 mV at a current density of 10/100 mA cm-2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.