Abstract

In this paper we address the problem of indoor tracking using received signal strength (RSS) as position-dependent data. This type of measurements are very appealing because they can be easily obtained with a variety of (inexpensive) wireless technologies. However, the extraction of accurate location information from RSS in indoor scenarios is not an easy task. Due to the multipath propagation, it is hard to adequately model the correspondence between the received power and the transmitter-to-receiver distance. For that reason, we propose the use of a compound model that combines several sub-models, whose parameters are adjusted to different propagation environments. This methodology, called Interacting Multiple Models (IMM), has been used in the past either for modeling the motion of maneuvering targets or the relationship between the target position and the observations. Here, we extend its application to handle both types of uncertainty simultaneously and we refer to the resulting state-space model as a generalized IMM (GIMM) system. The flexibility of the GIMM approach is attained at the expense of an increase in the number of random processes that must be accurately tracked. To overcome this difficulty, we introduce a Rao-Blackwellized sequential Monte Carlo tracking algorithm that exhibits good performance both with synthetic and experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call