Abstract

Carbon capture and storage (CCS) is expected to play a key role in meeting greenhouse gas emissions reduction targets. In the UK Southern North Sea, the Bunter Sandstone formation (BSF) has been identified as a potential reservoir which can store very large amounts of CO2. The formation has fairly good porosity and permeability and is sealed with both effective caprock and base rock, making CO2 storage feasible at industrial scale. However, when CO2 is captured, it typically contains impurities, which may shift the boundaries of the CO2 phase diagram, implying that higher costs will be needed for storage operations. In this study, we modelled the effect of CO2 and impurities (NO2, SO2, H2S) on the reservoir performance of the BSF. The injection of CO2 at constant rate and pressure using a single horizontal well injection strategy was simulated for up to 30 years, as well as an additional 30 years of monitoring. The results suggest that impurities in the CO2 stream affect injectivity differently, but the effects are usually encountered during early stages of injection into the BSF and may not necessarily affect cumulative injection over an extended period. It was also found that porosity of the storage site is the most important factor controlling the limits on injection. The simulations also suggest that CO2 remains secured within the reservoir for 30 years after injection is completed, indicating that no post-injection leakage is anticipated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call