Abstract

Climate change and sustainability are among the most widely used terms among policymakers and the scientific community in recent times. However, climate action or steps to sustainable growth in cities in the global south are mostly borrowed from general studies at a few large urban agglomerations in the developed world. There are very few modeling studies over south Asia to understand and quantify the impact of climate change and urbanization on even the most primary meteorological variable, such as temperature. Such quantifications are difficult to estimate due to the non-availability of relevant long-term observational datasets. In this modeling study, an attempt is made to understand the urban heat island (UHI), its transition, and the segregation of regional climate change effects and urbanization over the rapidly growing tier 2 tropical smart city Bhubaneswar in India. The model is able to simulate the UHI for both land surface temperature, called the SUHI, and 2-m air temperature, called UHI, reasonably well. Their magnitudes were ~ 5 and 2.5°C, respectively. It is estimated that nearly 60–70% of the overall air and 70–80% of the land surface temperature increase during nighttime over the city between the period 2004 and 2015 is due to urbanization, with the remaining due to the regional/non-local effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call