Abstract

Microbial cooperation widely exists in anaerobic reactors degrading complex pollutants, conventionally studied separately inside the biofilm or the planktonic community. Recent experiments discovered the mutualism between the planktonic bacteria and electroactive biofilm treating propionate, an end-product usually accumulated in anaerobic digesters. Here, a one-dimensional multispecies model found the preference on acetate-based pathway over the hydrogen-based in such community, evidenced by the fact that acetate-originated current takes 66% of the total value and acetate-consuming anode-respiring bacteria takes over 80% of the biofilm. Acetate-based anodic respiration most apparently influences biofilm function while propionate fermentation is the dominant planktonic bio-reaction. Additionally, initial planktonic propionate level shows the ability of coordinating the balance between these two extracellular electron transfer pathways. Increasing the propionate concentration from 2 to 50 mM would increase the steady hydrogen-originated current by 210% but decrease the acetate-originated by 26%, suggesting a vital influence of the planktonic microbial process to the metabolic balance in biofilm. Best strategy to promote the biofilm activity is to increase the biomass density and biofilm conductivity simultaneously, which would increase the current density by 875% without thickening the biofilm thickness or prolonging the growth apparently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.