Abstract

This paper outlines a numerical modelling study to predict the average residence time of a conservative tracer in a macro-tidal estuary, namely the Mersey Estuary, UK. An integrated hydrodynamic-dispersion model was used to predict the average residence time in the estuary for various tidal level and freshwater discharge conditions. The numerical model was verified against six sets of field measured hydrodynamic data, with the model-predicted water elevations and salinity levels generally agreeing well with the field measurements. The numerical model results show that in the Mersey Estuary both the tidal level and river discharge affect significantly the predicted average residence time. The value of the average residence time is also shown to be closely linked to the intensity of the residual tidal current. This is due to the fact that a large proportion of the Upper and Inner Estuary dries out during low tides, thus a significant amount of the tracer material is transported through the deep channels. An increase in the freshwater discharge causes a considerable increase in the intensity of the residual current along the main channels and thus a reduction in the average residence time. The predicted overall tracer residence time for the whole estuary is relatively short for a relatively large estuary, ranging from less than 1 day to 4 days for various tidal level and freshwater flow combinations. When the tidal range and freshwater discharge are both small, then the local tracer residence time in the upper part of the estuary can be significantly longer than the values predicted for the middle and lower reaches of the estuary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call