Abstract

This paper uses the cloud resolving Active Tracer High-resolution Atmospheric Model coupled to the interactive surface model Hybrid in order to investigate the diurnal development of a lake-breeze system at the Nam Co Lake on the Tibetan Plateau. Simulations with several background wind speeds are conducted, and the interaction of the lake breeze with topography and background wind in triggering moist and deep convection is studied. The model is able to adequately simulate the systems most important dynamical features such as turbulent surface fluxes and the development of a lake breeze for the different wind conditions. We identify two different mechanisms for convection triggering that are dependent on the direction of the background wind: triggering over topography, when the background wind and the lake breeze have the same flow direction, and triggering due to convergence between the lake-breeze front and the background wind. Our research also suggests that precipitation measurements at the centre of the basins on the Tibetan Plateau are not representative for the basin as a whole as precipitation is expected to occur mainly in the vicinity of the topography.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.