Abstract
Demand for renewable energy is increasing steadily and regulated by national and international policies. Offshore wind energy sector has been clearly the fastest in its development among other options, and development of new wind farms requires large ocean space. Therefore, there is a need of efficient spatial planning process, including the site selection constrained by technical (wind resource, coastal distance, seafloor) and environmental (impacts) factors and competence of uses. We present a novel approach, using Bayesian Belief Networks (BBN), for an integrated spatially explicit site feasibility identification for offshore wind farms. Our objectives are to: (i) develop a spatially explicit model that integrates the technical, economic, environmental and social dimensions; (ii) operationalize the BBN model; (iii) implement the model at local (Basque Country) and regional (North East Atlantic and Western Mediterranean), and (iv) develop and analyse future scenarios for wind farm installation in a local case study. Results demonstrated a total of 1% (23 km2) of moderate feasibility areas in local scaled analysis, compared to 4% of (21,600 km2) very high, and 5% (30,000 km2) of high feasibility in larger scale analysis. The main challenges were data availability and discretization when trying to expand the model from local to regional level. The use of BBN models to determine the feasibility of offshore wind farm areas has been demonstrated adequate and possible, both at local and regional scales, allowing managers to take management decisions regarding marine spatial planning when including different activities, environmental problems and technological constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.