Abstract

Complex real-time system design needs to address dependability requirements, such as safety, reliability, and security. We introduce a modelling and simulation based approach which allows for the analysis and prediction of dependability constraints. Dependability can be improved by making use of fault tolerance techniques. The de-facto example, in the real-time system literature, of a pump control system in a mining environment is used to demonstrate our model-based approach. In particular, the system is modelled using the Discrete EVent system Specification (DEVS) formalism, and then extended to incorporate fault tolerance mechanisms. The modularity of the DEVS formalism facilitates this extension. The simulation demonstrates that the employed fault tolerance techniques are effective. That is, the system performs satisfactorily despite the presence of faults. This approach also makes it possible to make an informed choice between different fault tolerance techniques. Performance metrics are used to measure the reliability and safety of the system, and to evaluate the dependability achieved by the design. In our model-based development process, modelling, simulation and eventual deployment of the system are seamlessly integrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.