Abstract

The TPC-C benchmark is a new benchmark approved by the TPC council intended for comparing database platforms running a medium complexity transaction processing workload. Some key aspects in which this new benchmark differs from the TPC-A benchmark are in having several transaction types, some of which are more complex than that in TPC-A, and in having data access skew. In this paper we present results from a modelling study of the TPC-C benchmark for both single node and distributed database management systems. We simulate the TPC-C workload to determine expected buffer miss rates assuming an LRU buffer management policy. These miss rates are then used as inputs to a throughput model. From these models we show the following: (i) We quantify the data access skew as specified in the benchmark and show what fraction of the accesses go to what fraction of the data. (ii) We quantify the resulting buffer hit ratios for each relation as a function of buffer size. (iii) We show that close to linear scale-up (about 3% from the ideal) can be achieved in a distributed system, assuming replication of a read-only table. (iv) We examine the effect of packing hot tuples into pages and show that significant price/performance benefit can be thus achieved. (v) Finally, by coupling the buffer simulations with the throughput model, we examine typical disk/memory configurations that maximize the overall price/performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.