Abstract

Employing first-principles methods, the docking sites for H were determined and H, Al, and vacancy defects were modeled with an infinite periodic array of super unit cells each consisting of 27 contiguous symmetry nonequivalent unit cells of the crystal structure of stishovite. A geometry optimization of the super-cell structure reproduces the observed bulk structure within the experimental error when P1 translational symmetry was assumed and an array of infinite extent was generated. A mapping of the valence electrons for the structure displays mushroom-shaped isosurfaces on the O atom, one on each side of the plane of the OSi3 triangle in the nonbonded region. An H atom, placed in a cell near the center of the super cell, was found to dock upon geometry optimization at a distance of 1.69 A from the O atom with the OH vector oriented nearly perpendicular to the plane of the triangle such that the OH vector makes a angle of 91° with respect to [001]. However, an optimization of a super cell with an Al atom replacing Si and an H atom placed nearby in a centrally located cell resulted in an OH distance of 1.02 A with the OH vector oriented perpendicular to [001] as observed in infrared studies. The geometry-optimized position of the H atom was found to be in close agreement with that (0.44, 0.12, 0.0) determined in an earlier study of the theoretical electron density distribution. The docking of the H atom at this site was found to be ∼330 kJ mol−1 more stable than a docking of the atom just off the shared OO edge of the octahedra as determined for rutile. A geometry optimization of a super cell with a missing Si generated a vacant octahedra that is 20% larger than that of the SiO6 octahedra. The valence electron density distribution displayed by the two-coordinate O atoms that coordinate the vacant octahedral site is very similar to those displayed by the bent SiOSi angles in coesite. The internal distortions induced by the defect were found to diminish rather rapidly with distance, with the structure annealing to that observed in the bulk crystal to within about three coordination spheres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.