Abstract

Petri nets represent a useful tool for performance, dependability, and performability analysis of complex systems. Their modeling power can be increased even more if nonexponentially distributed events are considered. However, the inclusion of nonexponential distributions destroys the memoryless property and requires to specify how the marking process is conditioned upon its past history. We consider, in particular, the class of stochastic Petri nets whose marking process can be mapped into a Markov regenerative process. An adequate mathematical framework is developed to deal with the considered class of Markov Regenerative Stochastic Petri Nets (MRSPN). A unified approach for the solution of MRSPNs where different preemption policies can be defined in the same model is presented. The solution is provided both in steady-state and in transient condition. An example concludes the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.