Abstract

Decisions about modeling and simulation (M&S) of real-world systems need to be evaluated prior to implementation. Discrete Event, System Dynamics, and Agent Based are three different modeling and simulation approaches widely applied to enhance decision-making of M&S of these systems. Combining and/or integrating these methods can provide solutions to a plethora of systems’ problems. However, current solutions and frameworks do not provide guidance for selecting and deploying M&S models. Hence, the aim of this work is to present a generic modeling framework for combining and/or integrating Discrete Event, System Dynamics, and Agent Based simulation approaches. The framework is termed multi-paradigm modeling framework (MPMF). In this paper, we describe the research methodology that was followed for the development of MPMF, the different phases of MPMF, and the generic relationships of forming and deploying multi-paradigm simulation models. Then we evaluate the framework by using it for the implementation of a universal task analysis simulation model (UTASiMo). The MPMF provided guidance on what methods need to be incorporated into the UTASiMo models, what information is exchanged among those models, and how these models are connected and interact with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.