Abstract

Recently, robotic surgery systems using passive flexible catheters have been developed for minimally invasive surgical applications – such as in the treatment of atrial fibrillation – where catheter control in the open chamber of the heart is required. The soft, atraumatic construction of these devices help reduce injury to delicate cardiac structures while providing a means of tool placement and control. To provide kinematic and control relationships, various models of continuous catheters have been developed. However, these approaches cannot explain the nonlinear behavior of the catheter when the effect of internal friction is considered. In this paper, we describe a lumped-parameter modeling approach which directly accounts for the effects of internal device friction. The nonlinear model is validated against experimental results from a prototype robotic catheter and is shown to correctly predict the variations in curvature and path-dependent instantaneous behavior observed. Finally, the validated model is used to investigate and describe a set of non-ideal catheter motions observed in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.