Abstract

In this work, a Field Programmable Gate Array (FPGA)-based embedded software platform coupled with a software-based plant, forming a Hardware-In-the-Loop (HIL), is used to validate a systematic sensor selection framework. The systematic sensor selection framework combines multi-objective optimization, Linear-Quadratic-Gaussian (LQG) control, and the nonlinear model of a maglev suspension. The physical process that represents the suspension plant is realized in a high-level system modeling environment, while the LQG controller is implemented on an FPGA. FPGAs allow to rapidly evaluate algorithms and test designs under real-world scenarios avoiding heavy time penalty associated with Hardware Description Language (HDL) simulators. Moreover, the HIL technique implemented shows a significant speed-up in the required execution time when compared to the software-based model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.