Abstract

A simple model to explain the NQR lineshape in solids with orientational disorder or substitutional disorder is presented. The particular case of m-chlorobromobenzene is studied. It is based on the assumption that Bromine atoms, of m-chlorobromobenzene molecules, behave as point defects in the m-dichlorobenzene lattice that modify the crystalline Electric Field Gradient. The model is also tested successfully in solid solutions of p-dichlorobenzene-p-dibromobenzene, where Bromine atoms of p-dibromobenzene molecules are assumed to be homogeneously distributed in the p-dichlorobenzene lattice. The lineshape, of others disordered chlorohalobenzenes, are also analyzed. Also, a characterization of m-chlorobromobenzene dynamics is included. In particular, there is no evidence of molecular reorientations as it is observed in the disordered phases of o-chlorobromobenzene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call